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ABSTRACT. Premature Ventricular Contraction is an arrhythmia that can be associated with several cardiac 
disorders that affect from 40% to 75% of the general population. Premature Ventricular Contraction 
occurrence is diagnosed from the Electrocardiogram. If in an Electrocardiogram one (or two) Premature 
Ventricular Contraction occurs between two Normal heartbeats, then there is a Ventricular Bigeminy (or 
Trigeminy). The prevalence of Ventricular Bigeminy/Trigeminy rhythms is associated with angina, 
hypertension, congestive heart failure and myocardial infarction. In this work it is proposed a new approach 
for these rhythms early diagnosis using Decision Tree models. The proposed approach uses the information 
before occurrence of Ventricular Bigeminy/Trigeminy, i.e., the number of normal and abnormal heartbeats 
and the heart rhythm. In order to rhythm prediction, the models obtained from Random Forest algorithm, 
induced by cross-validation approach, are used. Proposed approach predicted Ventricular 
Bigeminy/Trigeminy occurrence with accuracy, sensitivity and specificity of 98.94%, 96.28% and 99.83, 
respectively. Furthermore, the results showed that the Ventricular Bigeminy/Trigeminy is preceded for 
Normal, Atrioventricular Junctional and Paced heart rhythms in most of the examples. Besides that, it is 
presented a simple algorithm for decision about the occurrence of Ventricular Bigeminy/Trigeminy rhythms. 
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INTRODUCTION 
 
Heart rhythm depends on the specific initialization 
and propagation of the electrical impulses from the 
specialized cardiac cells. Normally, these impulses 
arise from sinus node (Natural pacemaker). But, for a 
variety of reasons, such as valve disorders, high blood 
pressure, cardiomyopathy, injury from a heart attack, 
use of drugs, among others, they can arise in another 
site in the heart (Gerry & Lemery, 2018). In these cases, 
the observed effect is that the heart beats very fast, 
very slowly or irregularly. When the ventricles assume 
the function of pacemaker, Premature Ventricular 
Contraction (PVC) is characterized. This arrhythmia is 
due to three main effects: abnormal impulse formation, 
reentry and triggered activity (Latchamsetty & Bogun, 

2015). It has been studied by several researchers, who 
have proposed algorithms for its automatic 
recognition based on two template-matching 
procedures using the correlation coefficients (Li et. al, 
2014); eigenvectors obtained from Principal 
Component Analysis and Linear regression analysis 
(Hadia et. al, 2017); Gaussian process classifiers, 
wavelet and S transforms (Bazi et. al, 2013); 
geometrical features and ensemble of machine 
learning using analytic hierarchy process (Oliveira et. 
al, 2019). Such studies are very important because PVC 
can be associated to the risk of sudden death (Fred, 
2009) and a high frequency of its occurrence can lead 
to hemodynamic problems (Garcia & Miller, 2004). 

PVC occurrence is more frequent in people 
with higher risk of coronary heart disease 
(Latchamsetty & Bogun, 2015). It is associated to 
structural heart diseases and represents an increased 
risk of cardiovascular diseases and sudden death 
(Amir et. al, 2020, Ahn, 2013). Although PVC 
occurrence can be considered benign in people 
without any structural heart disease, some studies 
suggest that PVC can induce cardiomyopathy even in 
healthy subjects (Ahn, 2013). This arrhythmia was 
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detected in 40% to 75% of general population 
evaluated by a 24-hour or 48-hour Holter Monitoring 
(Ahn, 2013). 

For measuring the electrical activity of the 
heart, it is commonly used the Electrocardiograph that 
provides the Electrocardiogram (ECG), which is 
composed by the waves P (atrial depolarization), QRS 
complex (ventricular depolarization) and T 
(ventricular repolarization). If an alternating heartbeat 
pattern composed of Normal and PVC is observed in 
an ECG segment, then there is a Ventricular Bigeminy 
rhythm when there exists one PVC between two 
normal heartbeats. Or a Ventricular Trigeminy 
rhythm, for two PVC between two normal heartbeats 
(Chugh, 2012). The presence of repetitive Ventricular 
Bigeminy/Trigeminy was associated with certain 
clinical characteristics as angina, hypertension, 
congestive heart failure and myocardial infarction 
(Weaver, Cobb & Hallstrom, 1982). In Wang et. al 
(2021) the prevalence of Bigeminy/Trigeminy was 
significantly higher in patients with obstructive sleep 
apnea. 

Some researchers have proposed 
methodologies for cardiac rhythm recognition. 
Andersen, Peimankar & Puthusserypady (2019) 
proposed a real-time methodology combining the 
Convolutional- and Recurrent-Neural Networks using 
RR intervals to classify ECG segments as Atrial 
Fibrillation (AF) or Normal sinus rhythm. Their 
methodology extracts high level features from 
segments of RR intervals directly from the data. The 
results, over three datasets including a total of 89 
subjects, achieved sensitivity and specificity of 98.98% 
and 96.95%, respectively. 

Teplitzky, McRoberts & Ghanbari (2020) 
presented the BeatLogic® platform designed for 
heartbeat and rhythm detection/classification, 
employing Deep Learning models such as 
convolutional networks. This platform is divided in 
two main networks: RhythmNet and BeatNet. The first 
network detects/classifies rhythms as Sinus rhythm, 
Atrial fibrillation/flutter, Supraventricular 
tachycardia, Junctional rhythm, Second-degree heart 
block type 1, Second-degree heart block type 2, Third-
degree heart block, and other. The second network 
detects heartbeats, artifacts and pause annotation, and 
classifies the heartbeats. In the detection stage the 
methodology achieves sensitivity and positive 
predictive values of 99.84% and 99.78%, respectively. 
In the classification stage, the performance of 
recognizing the Ventricular ectopic beats (or PVC) was 
89.4% and 97.8% of sensitivity and positive predictive, 
respectively. 

In a similar way, Goodfellow et al. (2018) 
implemented a 13-layer convolutional network for 
classification among Normal, Atrial Fibrillation (AF), 
and other rhythms in single lead ECG. The network 
includes dilated convolutions, max pooling, ReLU 

activation, batch normalization, and dropout. The 
average results were 84%, 85%, 88% for precision, 
recall and accuracy, respectively. The worst 
classification occurred among the other/AF classes in 
15.86% of the instances. 

Unlike previous works, Hajeb-
Mohammadalipour et. al (2018) developed an 
automated approach to identify many types of 
arrhythmic episodes using a classical Machine 
Learning (ML) algorithm, namely, binary Decision 
Tree, support vector machine and many other types of 
signal characterization, such as temporal and 
frequency representation, non-linear analysis and 
image-based phase plot. This approach is divided in 
four stages: (1) classification between Ventricular 
Fibrillation (VF) and non-VF, which includes 
Ventricular Bigeminy/Trigeminy; (2) classification 
between AF and non-AF; (3) PVC detection on every 
non-AF; (4) determination of the PVC patterns, to 
categorize the types of sinus arrhythmias and normal 
sinus rhythm. The obtained results in a balanced 
dataset were 95.1%, 94.5% and 94.2% of accuracy, 
sensitivity and specificity, respectively. 

A common attribute of the aforementioned 
works is that such methodologies analyze an ECG 
segment and then decide on its rhythm. In other 
words, theses algorithms only predict the past rhythm, 
because the ECG is a time series. However, early 
detection is very important for: (1) remote monitoring 
systems (RMS) (Hernández-Madrid et al, 2014), since 
according to Ricci et. al (2013), RMS prevents multiple 
face-to-face visits to the hospital and enables early 
detection of problems and continuous follow-up, 
improving safety and quality of life; (2) heart failure 
(HF) diagnosis (Tsai et al, 2020), because HF remains a 
major cause of mortality and also leads to enormous 
social problems around the world (Neubauer, 2007); 
and (3) development of applications for implantable 
cardiac defibrillators (Taye et al, 2019). 

Other works have focused in early rhythm 
prediction. Lee et. al (2016) disclose a method for 
prediction of ventricular tachycardia one hour before 
its occurrence by means of artificial neural networks 
(ANN) (with backpropagation learning rule and a 
perceptron structure), using until 14 parameters 
obtained from heart rate variability (HRV) and 
respiratory rate variability. The performance achieved 
sensitivity of 88%, specificity of 82%, and AUC of 93%. 

Taye et. al. (2019) presented a method for early 
ventricular tachyarrhythmia prediction using HRV 
from 120 seconds and QRS complex shape features. 
This method detects the ventricular fibrillation 30 
seconds before its occurrence using two ANN trained 
with HRV and QRS features. Employing 10-fold cross-
validation, the results were 72% of accuracy using 11 
HRV features, while using four QRS complex shape 
features the accuracy was 98.6%. 
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Cappiello et. al (2015) proposed a novel 
statistical index for the early diagnosis of ventricular 
arrhythmia using the time delay phase-space 
reconstruction technique from ECG, predicting an 
impending arrhythmia from 356 ECG heartbeats, on 
average, before its onset. The statistics calculated in 
phase space diagrams were: mean, standard deviation, 
coefficient of variation, skewness and kurtosis. The 
achieved results were 96.88% of sensitivity, 100% of 
specificity and 98.44% of accuracy. 

Since PVC episodes and, consequently, 
Ventricular Bigeminy/Trigeminy rhythms are 
associated with severe cardiac disorders, it is useful 
that rhythm recognition methods are able to predict 
also these rhythms specifically. The methods 
mentioned in last paragraphs do not focus on the early 
recognition of Ventricular Bigeminy/Trigeminy 
rhythms. Only Hajeb-Mohammadalipour et. al (2018) 
investigated these rhythms, but only in opposition to 
the AF class, that is, the focus is not on Ventricular 
Bigeminy/Trigeminy. 

For these reasons, in this work a new approach 
is proposed to predict the Ventricular 
Bigeminy/Trigeminy rhythms using only information 
from the ECG segment before occurrence of 
Ventricular Bigeminy/Trigeminy. For this purpose, it 
is used the Random Forest algorithm to generate 
Decision Tree models. The mentioned information is 
composed only of the previous rhythm and the 
amount of Normal and Abnormal heartbeats, making 
it a very simple and low-cost method. 
 
MATERIALS AND METHODS 
 
Training data 

 
Two data bases are used in this research: MIT-BIH 
Arrhythmia (Moody & Mark, 2001) (MITDB) and 
Long-Term Atrial Fibrillation (Petrutiu, Sahakian & 
Swiryn, 2007) (LTAFDB), both provided by the 
PhysioNet repository (Goldberger et al, 2000). MITDB 
contains 48 half-hour excerpts from two-channel 
ambulatory ECG recordings, digitized at 360 samples 
per second per channel, with 11-bit resolution over a 
10 microvolt (mV) range, obtained from 47 subjects. 
LTAFDB includes 84 long-term ECG recordings 
digitized at 128 Hz with 12-bit resolution over a 20mV 
range, with durations normally varying from 24 to 25 
hours. Both databases contain information about the 
heartbeat type and localization (cardiac cycle) and the 
rhythm, which are described in Table 1. 

For the purpose of this research, the heartbeats 
different from N (Normal beat in Table 1) are 
accounted as Abnormal. Since not all ECG recordings 
have Ventricular Bigeminy/Trigeminy occurrences, 
only the records shown in Table 2 were selected. 
 
 
 

Table 1. Type of heartbeats and rhythms present in MITDB and 
LTAFDB databases 

 

Heartbeat type Rhythm 
Code Description Code Description 

N 
  

Normal beat rAB Atrial Bigeminy 

L Left bundle branch 
block beat 

rAFIB Atrial fibrillation 

R Right bundle branch 
block beat 

rAFL Atrial flutter 

B Bundle branch block 
beat 

rB Ventricular 
Bigeminy 

A Atrial premature 
beat 

rBII 2° heart block 

a Aberrated atrial 
premature beat 

rIVR Idioventricular 

J Nodal premature 
beat 

rN Normal sinus 

S Supraventricular 
premature 

rNOD Nodal (A-V 
junctional) 

V Premature 
ventricular 
contraction 

rP Paced 

r R-on-T premature 
ventricular 
contraction 

rPREX Pre-excitation 

F Fusion of ventricular 
and normal beat 

rSBR Sinus bradycardia 

e Atrial escape beat rSVTA Supraventricular 
tachyarrhythmia 

j Nodal (junctional) 
escape beat 

rT Ventricular 
Trigeminy 

n Supraventricular 
escape beat  

rVFL Ventricular flutter 

E Ventricular escape 
beat 

rVT Ventricular 
tachycardia 

/ Paced beat   
f Fusion of paced and 

normal beat 
  

 
 

Table 2. ECG recordings select for induced/test the prediction 
models. 

 

Database ECG recordings 
Numberof rhythms 

rB rT rN 

LTAFDB 01, 07, 08, 13, 16, 22, 23, 
28, 45, 47, 51, 58, 72, 
100, 101, 103, 119, 121, 
122, 200 

2638 733 13267 

MITDB 106, 119, 124, 200, 201, 
203, 207, 208, 210, 213, 
214, 217, 219, 221, 223, 
228, 233 

221 83 310 

 
 
Machine learning framework 

 
In order to develop a model to predict rhythms 
Machine Learning (ML) algorithms are employed. 
These algorithms map the input space, whose vectors 
represent characteristics of the cardiac cycle, to an 
output space with scalar elements, where each element 
describes a particular rhythm. In the context of this 
work, let 𝑇 = {(𝒙𝑘, 𝑦𝑘)}𝑘=1

𝐾  be a dataset with 𝐾 
instances, where 𝒙𝑘 = (𝑥1𝑘 , 𝑥2𝑘 , 𝑥3𝑘) ∈ ℝ3 and 𝑦𝑘 ∈

{0, 1} are the feature vector (input) and the class 
(output), respectively. Output values are codes for the 
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rhythms, i.e., Normal rhythm is encoded as 0 and 
Ventricular Bigeminy/Trigeminy as 1. About the 
input, the third component, 𝑥3𝑘, also encodes the 
rhythm, but only for previous ECG segment. In this 
case, all rhythms in Table 1 are considered. On the 
other hand, the first two components, 𝑥1𝑘 and 𝑥2𝑘 are 
real numbers varying in the range [0, 1]. These values 
are related to the number of Normal and Abnormal 
heartbeats, divided by the total of heartbeats. 

In this research the well-known Random 
Forest (RF) algorithm is employed. This algorithm is 
an ensemble approach that combines different 
Decision Tree (DT) models considering randomly 
chosen features subspaces. Due to randomness, the 
split points in the DT are different for each initialized 
model. The final decision on the prediction is obtained 
by merging the prediction from the individual DT 
through a majority vote scheme (Awad & Khanna, 
2015, Breiman, 2001). RF overcomes individual 
Decision Trees because overfitting is not a problem 
(Breiman, 2001) and also improves the accuracy (Ho, 
1998). Here, this algorithm is chosen because it 
generates models whose structure is easy to interpret, 
considering a single DT model. It is important for the 
validation of models by physicians. 

In order to evaluate the rhythm recognition 
task, classical metrics are used: accuracy, specificity 

and sensitivity, given by 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, 𝑆𝑝 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
 and 𝑆𝑒 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, respectively, where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 

and 𝐹𝑁 are true positive, true negative, false positive 
and false negative, respectively. Sensitivity is also 
called as True Positive Rate (TPR), whereas False 

Positive Rate (FPR) is given by 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
. 

These rates are also used in Receiver 
Operating Characteristics (ROC) analysis, where each 
ordered pair (𝐹𝑃𝑅, 𝑇𝑃𝑅) is a point in a two-
dimensional ROC space that represents the recognition 
performance. In order to generate ROC curves a score 
of the recognition model is employed as a threshold. 
For each threshold, different points are created, 
forming the ROC curve. Generally, this threshold is 
associated to prediction probability. The Area Under 
Curve (AUC) can be associated to each ROC curve 
(Tom, 2006). AUC equal to 1 means the best 
performance, since all positive instances are predicted 
correctly and no negative instance is mistaken as a 
positive one. Commonly, in the ROC graphs there is a 
diagonal line, where the pair of components 
(𝐹𝑃𝑅, 𝑇𝑃𝑅) has the same value. A model that produces 
points under this line is considered as one that cannot 
use the information learned. If the points are over this 
line, then this model have no information about the 
class (Tom, 2006). 
 
 
 
 

Proposed approach 
 

The proposed approach1 requires some information 
already available in the databases, such as: QRS (or R 
wave) position, heartbeat classification and rhythm 
change position. Therefore, the first procedure is to 
create a dataset from MITDB and LTAFDB databases 
separating inputs and outputs according to the ECG 
annotations. Therefore, rhythm change markings are 
used, represented by symbol “+” in these databases. 
Afterwards, 𝛺𝑄 heartbeats are taken before each 𝑄 

rhythm change mark and calculated the number of 
Normal (𝑁𝛺𝑄

) and Abnormal (𝐴𝛺𝑄
) heartbeats, 

normalized as 𝑁′𝛺𝑄
= 𝑁𝛺𝑄

/𝛺𝑄 and 𝐴′𝛺𝑄
= 𝐴𝛺𝑄

/𝛺𝑄. It is 

done independently for each ECG recording. 𝛺𝑄 

parameter is important because it is related to the 
length of the ECG segment and the larger it is, the 
more a specific type of heartbeat can occur than other. 
Therefore, the aforementioned normalization 
procedure is required. 

At end, the 𝑘-th input is 𝒙𝑘 = (𝑁′
𝑘, 𝐴′

𝛺𝑘
, 𝛼𝑘) 

and the output is 𝑦𝑘 = 𝛽𝑘, where 𝛼𝑘 and 𝛽𝑘 are the 
rhythms from the previous and predicted ECG 
segments, respectively, where 𝑘 = 1, … , 𝐾, such that 𝐾 
is the total of rhythm changes. 𝛼𝑘 may have any 
rhythms from Table 1, column code. On the other 
hand, 𝛽𝑘 takes only the values 0 and 1 which encode 
rN and rB (or rT), respectively. Figure 1 illustrates the 
proposed approach. 
 

 
 
Figure 1. Block diagram of the proposed approach. 

 

                                                           
1 Python source codes for the proposed approach are available at: 
https://github.com/brunobro/early-detection-of-ventricular-
bigeminy-trigeminy-rhythms  

https://github.com/brunobro/early-detection-of-ventricular-bigeminy-trigeminy-rhythms
https://github.com/brunobro/early-detection-of-ventricular-bigeminy-trigeminy-rhythms
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Since the rhythm’s values are categorical, it is 
implemented a function to encode them into numeric 
values. Furthermore, if the previous ECG segment 
contains more than one rhythm, then it is discarded. 
Therefore, the higher 𝛺𝑄 parameter is, the more 

segments are discarded, and consequently there will 
be less instances to learn the models. 

In order to learn and validate the RF models, 
the 5-fold cross-validation is employed, which consists 
in subdividing 𝑇 dataset into disjoint sets called 
induction and test, five times. Since each fold 
generates a specific model with its own performance 
values, overall performance is given by the average. 

Lastly, for the computational implementation, 
three popular and efficient libraries written in Python 
language were used: Numpy (Harris, 2020), Pandas 
(McKinney, 2010) and Scikit-learn (Pedregosa et al, 
2011). In order to fit the DT models induced by RF 
algorithm, the default parameters set in Scikit-learn are 
used. The most relevant is the number of estimators 
which is related to the number of DT models 
considered in the ensemble. Here, it is set as 100. 

 
RESULTS 

 
Patterns found in the datasets are shown in Table 4, 
where the occurrences of heartbeats are described. It 
shown the variability of previous and posterior 
rhythms as well as the heartbeats type. It reveals that it 
is difficult to obtain a model for mapping input to 
output. For example, first row of Table 3 reveals that 
there are 11 occurrences of the pattern with input 
heartbeat N (Normal beat) and rhythm rAB (Atrial 
Bigeminy) and output rB (Bigeminy). On the other 
hand, there are also 11 occurrences of a similar pattern, 
different only in relation to heartbeat which is of the 
type A (Atrial premature beat). Table 3 also shows that 
the most frequent pattern consists of the rN rhythm 

preceded by Normal heartbeat and rAFIB rhythm (4th 
row). 

Since the choice of 𝛺𝑄 (number of previous 

heartbeats) changes the number of instances used to 
induce the models, in Table 5 it is shown the number 
of rhythms when 𝛺𝑄 is fixed at 5, 10 or 15 heartbeats. 

These values correspond to 4, 8 and 15 seconds, 
respectively, taking into account an average duration 
of 0.8 seconds for the cardiac cycle. In addition, this 
table also shows the average percentage of occurrences 
of Normal and Abnormal heartbeats used in the input, 
e.g., for 𝛺𝑄 = 5, on average 30% of previous heartbeats 

are Normal and 70% are Abnormal. Generally, there 
exist much more Normal than Abnormal heartbeats, 
but in the present study, it must be remembered that 
only ECG recordings with Ventricular Bigeminy and 
Trigeminy rhythms (see Table 2) are employed. 
Therefore, the percentage of Normal heartbeats is 
lower.  

Furthermore, the values presented in Table 4 
clarify that there are much more Normal rhythm 
occurrences than Ventricular Bigeminy and Trigeminy 
in the previous ECG segment. On the other hand, the 
frequency of Normal heartbeats is less than Abnormal, 
for ECG segments that precede changes in rhythm, as 
it can be seen in Table 3. Due to this characteristic and 
due to the disposal of ECG segments, mentioned in 
previous section, there is more variation (when 𝛺𝑄 

changes) in the number of previous rhythms than 
posterior rhythms, considering rB and rT. 
Furthermore, it is important to note that the same 
rhythm can be computed for previous and posterior 
segments, since ECG is a time series. 
 
 
 

 
Table 4. Input and output occurrences found in the ECG recordings. 

Row 

Previous ECG segment (input) Posterior ECG segment (output) 

Heartbeat occurrence 
Rhythm Rhythm 

N V A 

1 11 0 11 rAB rB 
2 14546 0 18053 rAB rN 
3 62363 1298 2 rAFIB rB 
4 307299 5276 11 rAFIB rN 
5 1967 190 0 rAFIB rT 
6 9176 11685 0 rB rN 
7 11 11 0 rB rT 
8 234774 16774 7841 rN rB 
9 102759 6684 2365 rN rT 

10 88 0 2 rSBR rB 
11 36854 273 256 rSBR rN 
12 45 0 0 rSBR rT 
13 0 0 26 rSVTA rB 
14 0 0 12228 rSVTA rN 
15 0 0 6 rSVTA rT 
16 5 3 0 rT rB 
17 4238 2839 0 rT rN 
18 0 78 0 rVT rN 

Total 774136 45111 40801   
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Table 5. Number of rhythms and proportion of heartbeats type. 

Code rhythm 
Previous heartbeats (𝜴𝑸) 

5 10 15 

 Occurrences in the posterior segments (output) 

rN 9,520 2,687 1,563 
rB 2,437 1,995 1,703 
rT 761 639 566 
Total 12,718 5,321 3,832 

 Occurrencesin the previous segments (input) 

rAB 3,591 721 414 
rAFIB 702 496 440 
rB 2,731 516 273 
rIVR 3 1 1 
rN 3,093 2,560 2,204 
rNOD 2 0 0 
rP 8 7 7 
rSBR 1,391 578 344 
rSVTA 390 75 45 
rT 797 360 98 
rVFL 5 5 4 
rVT 5 2 2 
Total 12,713 5,319 3,830 

Heartbeat’s type Average percentage occurrences 

Normal 30% 37% 38% 
Abnormal 70% 63% 62% 

Table 6. Results for 5-fold cross-validation in the training dataset.

Previous heartbeats (𝜴𝑸) Fold Accuracy Sensitivity Specificity 

5 

1 0.9914 0.9668 0.9996 

2 0.9919 0.9687 0.9997 

3 0.9919 0.9691 0.9996 

4 0.9913 0.9656 0.9999 

5 0.9980 0.9926 0.9999 

Avg.* 0.9929 0.9726 0.9997 

10 

1 0.9871 0.9820 0.9921 

2 0.9864 0.9739 0.9986 

3 0.9875 0.9829 0.9921 

4 0.9864 0.9820 0.9907 

5 0.9993 0.9986 1.0000 

Avg.* 0.9893 0.9839 0.9947 

15 

1 0.9843 0.9758 0.9968 

2 0.9843 0.9763 0.9960 

3 0.9856 0.9763 0.9992 

4 0.9843 0.9758 0.9968 

5 0.9993 0.9989 1.0000 

Avg.* 0.9876 0.9806 0.9978 

*Average of the five values of performance 
 

Table 7. Results for 5-fold cross-validation in the test dataset. 

Previous heartbeats (𝜴𝑸) Fold Accuracy Sensitivity Specificity 

5 

1 0.9988 0.9953 1.0000 

2 0.9965 0.9875 0.9995 

3 0.9965 0.9875 0.9995 

4 0.9976 0.9969 0.9979 

5 0.9575 0.8466 0.9947 

 AAvg.* 0.9894 0.9628 0.9983 

10 

1 0.9934 1.0000 0.9870 

2 0.9972 0.9981 0.9963 

3 0.9915 0.9962 0.9870 

4 0.9962 1.0000 0.9926 

5 0.9173 0.8406 0.9926 

A Avg.* 0.9791 0.9670 0.9911 

15 

1 0.9987 1.0000 0.9968 

2 0.9987 0.9978 1.0000 

3 0.9935 0.9978 0.9872 

4 0.9974 1.0000 0.9936 

5 0.8995 0.8326 0.9968 

A Avg.* 0.9775 0.9656 0.9949 

https://www.ifgoiano.edu.br/periodicos/index.php/multiscience/index
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To find out how much the performance 
changes when 𝛺𝑄 increases, it is evaluated in the range 

from 10 to 150. Figure 2 reveals that all performance 
measures decrease when 𝛺𝑄 increases, but this 

reduction is not constant. Moreover, Sensitivity suffers 
less oscillation than other performance measures. 

As mentioned in Section Machine learning 
framework, RF algorithm is an ensemble of DT 
models. Thus, the class is predicted taking into 
account the contribution of each DT model. 
Performance measures shown in Tables 6 and 7 are the 
outputs of the ensemble. In order to verify each 
contribution, the performance measures are computed 
for each one of the 100 trees and the results are shown 
in the boxplot, Figure 3. For this experiment 70% and 
30% of all instances are considered for induction and 
test, respectively. 

Performance measures presented in Tables 6 
and 7 are sensitive to the balance of rhythms classes. 
On the other hand, ROC curves, that associate TPR 
and FPR, are insensitive to changes in class 
distribution (Tom, 2006).  

Figure 4 shows ROC curves and the related 
AUC for each fold with 𝛺𝑄 = 5, mean ROC and the 

standard deviation (𝜎) of the five folds. 
One of the characteristics of the DT algorithms 

is their ability in measuring the features importance, 
i.e., they return the weight that a feature has at 
predicting a class (output) based on the criterion used 
to split the tree. Table 8 describes the percentage 
importance that each feature has, according to the 
number of previous heartbeats, using 30% of the data 
for test and 70% for induction, without implementing 
cross-validation method. 

From Tables 6 and 7, it is clear that the 
induced models make prediction errors for some 
instances. In order to diagnose the most common 
prediction errors, in Table 9 the frequencies of errors 
are shown, comparing the rhythm predicted with the 
true rhythm. Analogously to previous results, these 
frequencies are described for different 𝛺𝑄values. It is 

noted that the major errors happen when previous 
rhythms are equal to rAFIB and true rhythm is equal 
to rB or rT. 

One of the advantages of DT models is their 
association with a tree structure, which is useful for 
human interpretation, unlike other ML methods, such 
as neural networks. In order to obtain a simple tree 
structure, in the DT algorithm the max depth 
parameter is set to 2. Thus, the tree is expanded until it 
obtains two branches. Employing DT approach with 
70% for induction and 30% for test, the tree structure is 
shown in Figure 5. It can be converted in an 
algorithmic language, as presented in Algorithm 1, 
which results in accuracy, sensitivity and specificity 
close to 99.19%, 99.93% and 96.29%, respectively, in the 
test dataset. 

 

Figure 2. Performances measures when 𝛺𝑄 increases. 

 
 Figure 3. Boxplot of the performance measures for 100 DT models, 

generated in RF. 

 

 
 

Figure 4. ROC curves and AUC for each model for 5-fold cross-
validation. 

 
Table 8. Feature importance given by RF algorithm. 

 

Previous 
heartbeats (𝜴𝑸) 

Features (input) importance 

𝑁′𝛺𝑄
 𝐴′𝛺𝑄

 𝛼𝑘 

5 15% 19% 66% 
10 16% 22% 62% 
15 17% 22% 61% 
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Table 9. Prediction errors for different number of previous 
heartbeats. 

Previous 
heartbeats 

(𝜴𝑸) 

Previous 
rhythm 

Truerhythm Predicted 
rhythm 

Occurrences 

5 

rAFIB rB or rT rN 27 

rB rN rB or rT 1 

rNOD rN rB or rT 2 

rSBR rB or rT rN 2 

10 

rAFIB rN rB or rT 2 

rAFIB rB or rT rN 16 

rB rB or rT rN 1 

15 

rAB rB or rT rN 1 

rAFIB rN rB or rT 1 

rAFIB rB or rT rN 11 

rT rB or rT rN 1 

 

 

 

Figure 5. A tree structure model generated using 70% of the data for 
training and 30% for testing. 

     

 
Algorithm 1. Algorithm obtained from a DT model. 

DISCUSSION 
 
The results presented in Tables 6 and 7 show a high 
performance regardless 𝛺𝑄 parameter and dataset. 

Therefore, for fold number 5, decreases in Accuracy 
and Sensitivity were observed, in relation to test 
dataset. Nevertheless, this decrease was less than 0.05. 
These results mean that the models learned by RF 
algorithm using the proposed features have very low 
generalization errors. Moreover, since for 𝛺𝑄 = 5 

greater performance was achieved, few information, 

related to ECG segment, is necessary for 
Bigeminy/Trigeminy recognition. 

On the other hand, curves in Figure 2 reveal 
that the performances decrease when 𝛺𝑄 increases too 

much. This is due to the reduction in the number of 
instances used to learn the models, as already 
explained in Section Machine learning framework 
(Table 5). Also, it is important to remark that the 
Specificity metric is the only one with greater 
variation. Such results suggest that the higher is𝛺𝑄, the 

worse are the models for Bigeminy/Trigeminy 
classification. 

The analysis of the feature’s importance (Table 
8) reveals that the previous rhythm has greater 
importance in the prediction models than the number 
of Normal and Abnormal heartbeats. The sum of the 
percentual importance of Normal (𝑁′𝛺𝑄

) and 

Abnormal (𝐴′𝛺𝑄
) features is inferior to the importance 

of the previous rhythm (𝛼𝑘), for all 𝛺𝑄. It indicates 

that, for the used dataset and DT models learned, the 
previous rhythm is decisive for the posterior rhythm 
prediction. In addition, we see that Algorithm 1 
(which has an accuracy of 99.19% and represents a 
simple DT model) does not use information about the 
number of heartbeats. 

Tree structure in Figure 5 and Algorithm 1 also 
shows that the Ventricular Bigeminy/Trigeminy is 
only preceded by the rhythms rN, rNOD or rP. This 
decision is made with a precision (Specificity) of 
96.29%. However, this Specificity decreases when 
compared to results obtained using 100 DT models in 
RF, due to the lack of information about the number of 
Normal and Abnormal heartbeats (see Figure 2). 
Therefore, rB and rT rhythms are more accurately 
predicted when the number of heartbeats is known. In 
general, Algorithm 1 explains that when there is a 
change of pace to Ventricular Bigeminy/Trigeminy, 
the previous rhythm must be rN, rNOD or rP. On the 
other hand, if the change of rhythm is for rN, then the 
previous rhythm can be rAB, rAFIB, rB or rIVR, but if 
it is none of these, then it must be different than rN, 
rNOD or rP. It is interesting to note that rN and rB 
rhythms can occur interspersed. In the datasets used in 
this work the occurrences of rN before rB and rB 
before rN were 2353 and 2728 times, respectively, 
which together correspond to 40% of total instances. 

Besides that, Algorithm 1 is very important 
because it provides a simple way to predict rhythms 
with higher accuracy. This algorithm can be adopted 
by any clinician/cardiologist and requires only the 
heartbeat type and the change of rhythm occurrence. 

From the boxplot in Figure 3, it can be 
observed that RF algorithm does not provide 
surprisingly better results than a single DT model. But 
we can see that Specificity and Sensitivity measures 
have considerable variations, represented by the 
outliers. This highlights the importance of using RF, 
since it makes it possible to better explore the space of 

𝑅𝑒: early rhythm 
𝑅𝑝: predicted rhythm 

 
if 𝑅𝑒  ∈  {rAB, rAFIB, rB, rIVR } then 
 𝑅𝑝 = rN 

else 
 if 𝑅𝑒  ∈ {rN, rNOD, rP} then 
  𝑅𝑝 = rB or rT 

 else 
  𝑅𝑝 = rN 
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models that can be learned from the data. 
Furthermore, there is a greater guarantee that the 
learned models will not be overfitted, due to the 
random bootstrap of the induction subsets. 

The prediction errors (Table 9) show how the 
previous rhythm rAFIB implies rB or rT rhythms, but 
the models learned do not always capture this 
association. One possible explanation is that the 
sequence of rAFIB, rB or rT rhythms were not learned 
well, because there are many more rN rhythms 
preceded by rAFIB than rB or rT rhythms, according to 
rows 3, 4 and 5 on Table 1. 

ROC curve (Figure 4) emphasizes the high 
performance of the proposed approach, since the mean 
AUC is around 0.99, and only for fold 5 it is 0.96. 

Since the state-of-the-art methodologies cited 
in the Introduction section do not employ an approach 
similar to the one proposed here, comparisons are not 
feasible. It is noteworthy that they use directly the 
ECG signal or features generated from it. Besides that, 
none of these works propose the specific 
Bigeminy/Trigeminy classification. 

Although the proposed approach has achieved 
higher performance, it has some limitations: (1) only 
the immediately posterior rhythm is predicted and (2) 
it is dependent on the mark of the rhythm change. 
Some of the works mentioned in the Introduction do 
not surpass these limitations. Lastly, in the next 
updates of the proposed approach (future works) 
these barriers must be overcome. In addition, it is also 
necessary to validate this approach in other databases. 
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